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Abstrac:t-Interlaminar stresses for joints with double cover plates are found by superposing two
parts based upon the energy method. As the series encountered can be summed, our solutions are
in closed form. The final result is checked exactly by the load the joint has to carry.

I. INTRODUCTION

Let two identical bars of orthotropic material with rectangular cross-section bh 1 be joined
lengthwise. They are glued together by two identical metallic cover plates of cross-section
bh, forming a laminated composite joint with double cover plates of length 2/ (Fig. I). The
tensile force P is transmitted to the cover plates by the interlaminar stresses in the adhesive
surfaces. These are concentrated near the ends of cover plates and often decide the strength
of the joint by causing delamination. E, G, !l are the elastic constants of the metal cover
plates. For orthotropic bars, one principal direction is along the length with elastic constant
E.. the others being E2, G. and !l.2'

The interlaminar stresses of this joint can be solved by superposing that of the following
two parts.

(I) The two bars in Fig. I are continuous, forming a laminated composite bar (Fig.
2a) and its interlaminar stresses are the first part. Transforming its cross-section into one
of the same material as the cover plates, for E I < E we get an I-shaped cross-section (Fig.
2b) with the area equal to 2bh+b(E1/E)h •. At distant cross-sections from the ends of the
cover plate, for instance at the middle cross-section, the stresses in the cover plates and bar
are, respectively (Fig. 2a)

(a)

(2) To remove the uniform tensile stress O'~ in the middle cross-section ofthe orthotropic
bar (Fig. 2a), apply a pair of uniform compressive stresses O'~ at the two opposite surfaces
ofthe gap in the joint (Fig. I). Figure 3 shows the left halfof the joint, the tensile stress at the
middle cross-section ofcover plate being O'~(h tl2h) to keep it in equilibrium. Its interlaminar
stresses form the second part. The corresponding axial compressive and tensile forces are:

__P_h_I _. E 1

E 1 E'
2h+ Ehl

(b)

2. THE INTERLAMINAR STRESSES OF PART ONE

Figure 4 shows the interlaminar stresses .0 and 0'0, which are expressed by a sine and
cosine series with On and bn to be determined:
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As 0'0 will form a couple. bo =O.
From the cover plate take an element dx (Fig. 5) upon which are acting the axial force

S and shearing force Q. Its equilibrium gives

From (2) it follows that

dS
-d = -b'to,x

dQ 'to
dx = -bO'o, Q = "2 bh. (2)

o

S
S+dS

Fig. 5.



Interlaminar stresses of composite joints

h dto
ao=--·-·

2 dx
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(3)

Thus along the adhesive surface ao is proportional to the slope of the 'to curve negatively
at the very point. From (1) and (3) we have the relation between an and bn:

h7t
bn = - 21 ann. (4)

It enables us to express the stress components of the cover plates and bar by an' Integrating
the first equation of (2) we get

bl an ( n7tx)S = - - L - cos n7t - cos - .
7t n= I n I

Now the normal stress component ax of the cover plate is

S I an ( n7tx)a< = - = - - L - cos n7t - cos - .
. bh 7th n- I n I

Substituting ax in the integral from the equilibrium equation

Ih/2:l 1<0:luax d utxy d 0- y+ - Y= ,
y aX 'XI oy

we get:

(
1 y) . n7tX

t xy = 2+ Ii Lan sm -1-'
n-I

And from another equilibrium equation we get

In a similar manner the stress components of the bar are obtained as

P 21 an ( n7tx)
a~ = - + - L - cos n7t -cos - ,

bh 1 nh 1 n- 1 n I

,-2y . nnx
t xy = -h- Lan sm -1-'

I n-I

, nh ( hI 2y2) nnx
ay = - 11 1+ 2h - hi! L ann cos -1-'

I n-l

(Sa)

(5b)

(5c)

(6)

Thus all the stress components are expressed by an, which will be determined by the Principle
of Least Work. Let U be the total strain energy of this composite bar and the coefficients
an should be such as to minimize U, namely
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I
:l } I' fh ' { , :l' '" [' , :l 'JU'x." . I - ax. uax a" •ca.. f.J. I: , ca,l' , vax

+ -G 'Xl' --;---- b dx dy + -E -,- + E- -,- - -E ax~ + a." -;--
uan 0 -h l ,2 I can : Can I uan uan

'~l crti'}+ -~ -,-' b dx dv = O. (7)
G[ can •

Substituting the six stress components in (7) we get, after lengthy calculation,

n cos me
an = -C 4 2 ' "n + y/n-+r

in which

2 {I h * I ( I 2h) an }- - - a + - - +-- L - cos me
n E 1 I n E E1h l n= I n

(8)

(9)

in which a* = Pjbh\. As can be seen from (9), when the cover plates and bar are of the
same isotropic material, P, 2.-, and C will be free from elastic constants. As a result, to and
ao do not depend upon the elastic constants. When the cover plates are of the same
orthotropic material as the bar, as often happens in wooden structures, then in the denomi
nators of (9) E has to be changed into E 2 and in the numerators E, G, f.J. have to be changed
into E h Gh f.J.12'

From (8) and (I) the interlaminar shearing stresses to become:

. nnx
n cos nn sm -,-

t - - C L: ----,,--------..,.---.-
0- n=1 n4 +2y/n 2+p2 .

(10)

As series (10) can be summed, to and ao are both in closed form. For p > 'I and for {3n to
be a comparatively large value, as usually occurs to becomes:

en { . . h {3n ,'n h {3n . i'n }
to = 4{3y sinh {3n sm 'In sm T X cos ,x-cos yn cos T X sm ,x ,

in which {3 = J1(P+'1), Y = J1(P-Y/). From (3), ao is given by

(Il)
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h dr0 Cx2 h { . . pn .}'n
(10 = - 2 dx = 4py sinh {he' 21 ('I sm yn+fJ cos 'In) smh T X Sin T X

-(p sin YX-i cos iX) cosh p; xcos 1; x}. (12)

Near the ends of the cover plate when sinh (pn/I)x = cosh (pn/I)x, a further simplification
can be made as follows:

. h pn
C sm -Ix ( )x . X

'to = 4PY' sinh fJn sm 11n 1-/ .

. h fJn
C 2 h sm T x { () ()}

(10 = 4;Y •21 sinh f3x y cos 'In 1-] - 13 sin i X I -] .

The shearing force transmitted by the cover plate is

f.
1 Cbhl

b to dx =--h-'
o 4pf3-.!.

1

(13)

(14)

(15)

The value C in the above equations has to be determined from the third equation of (9)
which includes the series L (all/n) cos me. Substituting (8) in it, we have for p > '1 with f3x

11-1
pretty large:

(16)

3. THE INTERLAMINAR STRESSES OF PART TWO

Differing from Fig. 4, Fig. 6 corresponds to the left half of the joint with the origin
taken at the left end of the cover plate. We still use (1) to denote the interlaminar stresses
to and (10'

The equations obtained from the equilibrium of an element cL'( of the cover plate are
the same as (2). This results in two equations, the same as (3) and (4). The cover plate has
its axial force equal to

I-I-----l IJ' .~t~i,+.p

L--....··~- 'l.'t+. p
I I

Fig. 6.
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bl an ( mrx) I PS = - - L - cos mr-cos - + -c:-:---=--
rr n _ I n I 2 2h E

- --+\
hi E I

The normal stress ax is

(c)

It differs from (5a) of the first part only in the additional constant term and hence t xy and
ay are the same as (5b, c). Similarly, for the bar we have

S' 21 an ( mex) 0'*a' =-=- L - cosme-cos- --::-:----
x bh I nh) n = I n I 2h E I--+

hi E I

(d)

It also differs from a~ of the first part in the constant term, so that t~y and a~ remain the
same as in (6). Substituting the six stress components in (7) we again have a result expressed
by equation (8). Besides, of the six stress components only ax and a~ differ from those of
the first part by their constant terms; p and 211 remain the same as in equation (9) of the
first part. Only the third one has to be changed, into

(17)

Equation (17) differs from the third part of (9) in that (a*IE)' (hll) has to be multiplied
by a factor

(18)

Since the two parts of superposition have the same values of p and 211, their pand yare
also same. Thus from eqns (II) and (12), it can be seen that the two different values of C
constitute the difference of two parts of the interlaminar stresses. Apparently, the sum of
the series L (anln) cos nn within the parentheses of (16) remains the same for the two

n=1

parts. As a result, from (17) and the third eqn of (9), it is seen that the value of C of the
second part is equal to that of first part multiplied by the factor (18). Therefore, the
interlaminar stresses of the first part multiplied by this same factor give the interlaminar
stresses of second part. Negative to means the direction is opposite to that shown in Fig. 6
and negative 0'0 means compressive stress.

For cover plates and bar made of the same orthotropic material, by setting E equal to
E 1 in (18) we get the factor - (h d2h). Multiplying the interlaminar stresses of the first part
by this factor, we get the interlaminar stresses of the second part.

However, the solution of first part of superposition is for the right half of the joint,
while the second part is for the left half. Owing to the symmetry of 0"0 and anti-symmetry
oft0, we can easily convert the first part to the left half and superpose with the second part
to get the interlaminar stresses of the joint.
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4. NUMERICAL ILLUSTRATIVE EXAMPLES
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4.1. Example I
An adhesive joint with double cover plates is made ofwooden bars and hard aluminium

cover plates with hI = 6h, Ilh = 32 and fl(2h+h 1) = f/8h = 4. For pine bars: E. = lOs
kg cm- 2

, E2 = 0.042 x lOs kg cm- 2
, G I = 0.075 x lOs kg crn- 2, /-l12 = 0.238. For hard

aluminium: E = 7 X lOs kg cm- 2
, G = 2.69 X lOs kg cm- 2

, f.l = 0.3.

First part of superposition
From (9) and (II), p = 5.4121, " = 3.7816; P= 2.1440. y = 0.90291. The series sum

(16) gives L (anln) cos me = -0.050616C. The third equation of (9) gives C = 3.04590"·.
n,,- 1

By (15) the shearing force transmitted by the cover plate is

I, 3.0459P
bto dx = = 0.34999P.

o 4x5.4121 x2.144x~

To check our calculation let us find the tensile force in the middle cross-section of the cover
plate. From (a) it is equal to

P
O"xbh = lOs = 0.35P.

2+ 7 x lOs x 6

This indicates the correctness of our calculation. Now by (11)-(14), to and do are found
and tabulated as follows.

x I 0.98 0.96 0.94 0.92 0.9 0.85 0.8 0.75
To 0 0.0710a· 0.1069 0.1398 0.1623 0.1763 0.1875 0.1726 0.1491
Uo 0.0547u" 0.0417 0.0303 0.0213 0.0141 0.0083 -0.0014 -0.0062 -0.0080
x 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.3 0.2
TO 0.1232 0.0979 0.0757 0.0571 0.0421 0.0305 0.0216 0.0102 0.0044
Uo -0.0082 -0.0075 -0.0064 -0.0052 -0.0041 -0.0032 -0.0024 -0.0013

Second part ofsuperposition
The factor (18) is

6 x lOs
- 2 x 7 x lOs = -0.42857.

Multiplying To and 0"0 in the above table by this factor, we get the interlaminar stresses of
the second part. The shearing force transmitted by the cover plate (Fig. 6) is equal to the
corresponding shearing force of the first part multiplied by this factor, namely

-0.42857 x 0.34999P = -O.14999P.

The negative sign means its direction is opposite to that in Fig. 6. This result is confirmed
by the tensile force at the end of cover plate:

Adding the shearing forces transmitted by the cover plate of two parts, we have the force
transmitted by the joint:
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0.34999P+0.14999P = 0.49998P.

The exact value is O.5P. Converting to and Uo of the first part to the left half (Fig. 4) and
superposing with that of the second part, we get the interlaminar stresses of the joint as
shown in Fig. 7.

As can be seen from Fig, 7, Uo is small compared with to. The reason is that for the
thin hard aluminium cover plate the bending moments formed by to are rather small and
require a comparatively small Uo to reduce them to zero. However, the maximum shearing
stress is twice as large as the average value.

4.2. Example 2
As a second example, let there be a pine adhesive joint with double cover plates,

h/l= 1/16,h/h\ = 3/5,1/(2h+h ,) = 4.36. The elastic constants are as given in first example.
First part of superposition

Converting equations (9) to the case for cover plates and bars made of the same
orthotropic material, we getp = 10.471, '1 = 7.5483. P, I in (11) are respectively 3.0016 and
1.2089. The series sum L (an/n) cos mr = -O.020428C and C = 3.5716u*.

n=1

To check our solution, use (15) to find the shearing force transmitted by cover plate:

if 3.5716P
bt0 dx = = 0.27273P.

o 4x 10.471 x3.0016x1 x 16

The tensile force in the middle cross-section of the cover plate is, from (a),

P
- = O.27273P.
2+1

The identity of the two results confirms our solution. Now using (11)-(14) we get to and
Uo which are tabulated as follows.

x I 0.98 0.96 0.94 0.92 0.9 0.8 0.75
to 0 0.0486 0.0802 0.0992 0.1088 0.1116 0.0807 0.0595
aD 0.0917a* 0.0614 0.0386 0.0215 0.0091 0.0003 -0.0137 -0.0125
x 0.7 0.65 0.6 0.5 0.4
to 0.0415 0.0277 0.0178 0.0066 0.0020
aD -0.0099 -0.0073 -0.0051 -0.0022 -0.0008



.
b

0.12 0.112

Interiaminar stresses of composite joints

f--l~=; ..

Fig. 8.

-00765

173

Second part of superposition
As factor (I8) gives h,/2h = -5/6, multiplying it by the interlaminar stresses of the

above table, we get the results of the second part. The shearing force taken by the cover
plate along the adhesive surface is

- 5/6 x 0.27273P = - 0.22727P.

This should be equal to the tensile force at the end of the cover plate (Fig. 6) :

I I_. =0.22727P.
22x!+1

The result obtained confirms our solution. Adding the two shearing forces along the
adhesive surfaces of the two parts, we get:

0.27273P+0.22727P =0.5P.

This is exactly equal to the load which a cover plate is required to carry. Superposing the
interlaminar stresses of two parts, we have that of the joint as shown in Fig. 8.

The numerical examples show that the interlaminar normal and shearing stresses are
concentrated near the ends of the cover plates. This accounts for the tearing of the cover
plates from the bar starting at the ends of the cover plates, as observed from experiments
with these kinds of joints.

5. DISCUSSION

The interlaminar stresses oflaminated compositejoints with double cover plates present
a problem of practical and theoretical interest. As previous works show, it is still not
satisfactorily solved. Yuceoglu and Updike (1980, 1981) regarded the adherends as beams
in action, which can take into account only the bending stress (1x and shearing stress Txy"

The stress component (1), is, in fact, as important as the normal interlaminar stress (10 we
are seeking. Disregarding it in adherends leads erroneously to the interlaminar shearing
stress To becoming maximum at the ends of the adhesive surface instead of zero as it should
be. Another type of solution was by the finite element method and valid only for special
cases of geometry and material.

Our solution is based upon the interlaminar stresses To and (10 of the corresponding
laminated composite bar. They are expressed by sine and cosine series as in (I). As the
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composite bar consists of three slender bars, their stress components ax can be obtained
by the Mechanics of Materials. The other stress components follow from equations of
equilibrium. With the relation between the coefficients an and b.. all the stress components
can be expressed by an' which is determined by the Principle of Least Work. As all the series
encountered can be summed, we get for this composite bar interlaminar stresses in closed
form. Seeing that the two series in (1) are complete sets of functions and in the process of
investigation we have not neglected anything, exact solutions have been obtained. This
confirms the simple solution long taught in Mechanics of Materials and enables us to clarify
how far from the ends this simple solution holds. It can also be shown that the interlaminar
stresses given here require the composite bar to be sufficiently long, just as the bending
theory requires the beam to be rather slender. Furthermore, when the bar is long enough,
for any specific composite bar its interlaminar stresses are independent of its length. With
all these considerations, we can simply go a step further by superposition to solve the joint
problem.

Extensions can be made to solve the following problems:

(1) interlaminar stresses of laminated composite lap joints and joints with a single
cover plate;

(2) thermal interlaminar stresses of laminated composite bars and joints;
(3) the effects of an adhesive layer with a certain thickness upon interlaminar stresses

of laminated composite bars and joints.
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